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Abstract: For the first time, well-founded new kinetic equations for the density matrix of an ensemble of non-interacting 

radical pairs (RPs) are derived considering their spin-dependent recombination. Recombination of RP is considered as a quasi-

unimolecular process. Similar to Rice-Ramsperger-Kassel-Marcus (RRKM) theory of unimolecular reactions it is suggested 

that there is stochastic Poisson process which provides randomly chances for recombination. Those chances appear 

independent of a spin state of RPs. Whether the chance to recombine will be realized or not depends on the state of the spins of 

the unpaired electrons of the RPs. For this model the spin density matrix ρ(t) can be represented as the product of the RP 

density matrix (hypothetical pair) ρ0
(t), in which the recombination of radicals is not included, and the probability f(t) that the 

RP in the time interval (0, t) survived, i.e. did not recombine: ρ(t)=f(t) ρ0
(t). In this work, new kinetic equations for f(t) and ρ(t) 

are derived. The equation for f(t) gives in fact kinetic equations for the concentration of RPs. The basic equations are obtained 

for the situation when all RPs of the ensemble start in the same pure quantum state. The obtained kinetic equations are 

generalized to the case when the initial state of the system is mixed. For some set of parameters of RPs, results of new kinetic 

equations presented in this work were compared with results of existing phenomenological kinetic equations. While they 

correspond qualitatively, there is significant quantitative difference.  

Keywords: Spin Chemistry, New Kinetic Equations, Kinetics of Radical Pairs Recombination,  

Spin-Dependent Recombination, Radical Pairs 

 

1. Introduction 

There are many examples of spin-dependent processes that 

occur between a pair of paramagnetic particles (see [1]). The 

most important example is the recombination of geminate 

radicals to form a diamagnetic product. In the overwhelming 

majority of cases, a pair of radicals recombines and gives a 

diamagnetic molecule only when the unpaired electrons are 

in a singlet state with a total spin of zero. A remarkable 

example is the pair of separated charges (radical ions), which 

are formed at the primary stage of photosynthesis. Another 

good example is the delayed fluorescence of organic 

molecules induced by triplet-triplet annihilation of excitons 

in molecular crystals (see, for example, [2-4]). 

For a quantitative theory of magnetic and spin effects in 

spin-dependent processes, it is necessary to include in the 

equations for the spin density matrix of the pair of 

paramagnetic particles (for example, a pair of free radicals or 

a pair of triplet excitons) terms that describe the “loss” of 

pairs by reaction. 

In order to simplify further discussions, let us focus on the 

recombination of radical pairs (RP), which is easily 

generalized to other cases. 

At time t, let the spin state of the RP ensemble be 

described as a quantum superposition of the singlet and 

triplet states of the spins of unpaired RP electrons with the 

total projection of spins on the quantization axis equal to 

zero: 
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Ψ(t)=a(t) ψS +b(t) ψT0.                        (1) 

In terms of the density matrix in the basis {S, T0} states 

(1) corresponds to the matrix. 

ρ(t)=� ������
� ����� ∗ ���

� ∗ ������� ������� 	             (2) 

Let us assume that in the singlet state RPs can recombine. 

Phenomenologically, this can be taken into account by 

introducing an additional factor exp(-Ks t/2) into the 

amplitude of the singlet contribution a(t) in (1). Then the RP 

population in the singlet state decreases as exp(-Ks t) due to 

recombination. Within the framework of such a 

phenomenological approach, off-diagonal matrix elements 

decrease as exp(-Ks t/2), and the RP population in the triplet 

state does not change. Within the framework of this 

phenomenological approach, the contribution of the RP 

recombination to the equation for the density matrix can be 

written in the following compact form [5–7]. 

(∂ρ/∂t)rec = - (Ks/2) (Ps ρ+ρ Ps).                 (3) 

In this equation, Ps is the projection operator into the 

subspace of the singlet state, Ps≡�S><S�. 

Along with (3), other options for describing the 

contribution of spin-dependent recombination to the equation 

for the RP spin matrix were also proposed (see, for example, 

[7–14]). In all cases when recombination occurs only for RP 

in the singlet state, the same equations are proposed for the 

RP populations in the singlet and triplet states, which also 

coincide with equations (3) 

(∂ρss/∂t)rec = - Ks ρss;                              (4) 

(∂ρT0T0/∂t)rec = 0. 

The proposals up to now differ from each other only for 

the off-diagonal elements of the spin density matrix. 

In the case of equations (3), it is proposed [5-7]. 

(∂ρST0/∂t)rec = - (Ks/2)ρST0.                      (5) 

In [11, 12], instead of (3), another equation was proposed. 

(∂ρ/∂t)rec = - Ksρ+KsPT0 ρ PT0);                  (6) 

In equation (6), PT0 is the projection operator into the 

triplet (T0) spin subspace. According to (6), for the diagonal 

elements of the density matrix, exactly the same equations 

(4) that give us equations (3) take place. For off-diagonal 

elements of the density matrix (6) gives a 2-fold faster 

decoherence of spin states compared to (3, 5). 

(∂ρST0/∂t)rec = - Ks ρST0.                      (7) 

In some cases, it is proposed to introduce a 

phenomenological constant, K, of the relaxation rate of the 

off-diagonal elements of the density matrix and write the 

phenomenological equations for spin decoherence in the 

form [7, 15]. 

(∂ρST0/∂t)rec = - K ρST0.                      (8) 

The rate constant K in (8) includes not only decoherence 

due to RP loss both in Eqs. (5, 7) but also decoherence due to 

paramagnetic relaxation. We note that, in principle, spin-

lattice paramagnetic relaxation should also be taken into 

account when writing the kinetic equations for the 

populations of spin states [1, 15]. The theory of paramagnetic 

relaxation of spins is well developed, and it allows one to 

include paramagnetic relaxation as an additive contribution 

to the kinetic equations for the RP density matrix (see, for 

example, [1, 15]). 

Let us note a common property of all the kinetic equations 

for RP available in the literature for the spin-dependent 

recombination of pairs. They are all linear equations in the 

density matrix elements. What is also common to all 

equations (3-6) is that they are written just by hand, they are 

not derived consistently within the framework of a clearly 

formulated recombination model of RPs. Indeed, the 

introduction of an additional decrease in the amplitude of the 

contribution of the singlet state to the wave function (1) is, to 

put it mildly, a strange procedure. In fact, when a particular 

pair of radicals recombines, this pair simply disappears, and 

accordingly, no wave function of it remains. If, in a pure 

quantum state, the superposition of a singlet and a triplet 

recombines to the extent of the singlet's contribution, then 

this does not mean that nothing changes in the population of 

the triplet state. The act of recombination that took place 

“knocks out” individual RP from the ensemble, along with 

their populations and quantum coherences. 

In this paper, we propose a different approach to describe 

the behavior of the RP density matrix with allowance for 

recombination. First, the RP recombination model is presented. 

Then, for this model, we obtain the kinetic equations for the 

RP density matrix. The results are compared with the solutions 

obtained using equations (3) and (6). 

2. RP Recombination Model 

The recombination of two radicals is a bimolecular 

reaction. This implies that the radicals approach each other in 

the course of random movements and can give a 

recombination product. But the recombination of a given pair 

of radicals is essentially a unimolecular process (in chemical 

kinetics, such processes are called quasi- unimolecular). The 

kinetics of unimolecular processes, for example, the thermal 

dissociation of molecules with concentration C, in 

accordance with the law of mass action, is described by the 

equation. 

∂С/∂t=-k C.                                   (9) 

Such kinetics can be theoretically derived from the 

assumption that unimolecular dissociation is a Poisson 

process that is uniform in time. According to the quasi-

equilibrium RRKM theory of unimolecular reactions, an 

elementary act of dissociation or isomerization occurs when, 

as a result of a random redistribution of energy between the 
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vibrational and rotational degrees of freedom of the 

molecule, conditions (“chance”) for dissociation or 

isomerization arise [16]. The fact that the law of mass action 

(9) works in many cases indicates that the random Poisson 

process can serve as a good model in many cases. In the case 

where a pair of radical ions (cation and anion) recombines, 

recombination requires the transfer of an electron. According 

to the Marcus theory, the reorganization of the environment 

(a certain electric polarization) is necessary for electron 

transfer [16]. The reorganization of the medium in the course 

of the thermal motion of atoms randomly creates the 

necessary conditions (“chance”) for electron transfer. And 

this process can be modeled using the Poisson process. 

Let us assume that the RP ensemble is prepared in the 

singlet spin state and that the RP can only recombine in the 

singlet spin state. If we assume that singlet-triplet transitions 

do not occur and that RP recombination is a Poisson process 

uniform in time with a rate constant Ks, then to consider RP 

recombination, a term can be added to the equation for the 

density matrix (cf. (9)). 

(∂ρ/∂t)rec= - Ksρ.                          (10) 

Ks-rate constant of the quasi- unimolecular RP 

recombination reaction in the singlet spin state. 

In fact, spin interactions cause singlet-triplet transitions. 

Therefore, the kinetics of RP recombination must somehow 

take into account the fact that, due to the spin dynamics of 

RP, it can turn out to be in situations where circumstances 

external to spins have created conditions favorable for 

recombination, but the spin state of the pair does not allow 

RP to recombine. Thus, the behavior of the RP is determined, 

on the one hand, by the Poisson process created by the 

motion of the degrees of freedom external to the spins, and, 

on the other hand, by the motion of the spins of unpaired 

electrons, which is determined by the spin Hamiltonian of the 

RP and the initial state of the spins of the pair of 

paramagnetic particles. In fact, the spin dynamics forms a 

“quantum random process” based on the spin selection rules 

for the RP recombination. 

In this paper, we will consider a simple situation where the 

spin Hamiltonian of the pair and Ks have constant values that 

do not change with time. The results obtained under this 

assumption can be further generalized to situations with 

random modulation of the pair spin Hamiltonian parameters 

and the RP recombination rate constant. 

3. Derivation of the Kinetic Equation for 

the RP Density Matrix Considering the 

Recombination of Radicals 

When deriving the equations, we assume that 

recombination and spin interactions between radicals from 

different pairs can be neglected. They greatly complicate the 

problem without producing new features. 

In the absence of radical recombination, the dynamics of 

the spins is given by 

∂ρ
0
/∂t= = - (i/�)[H,ρ

0
].                        (11) 

Here H is the RP spin Hamiltonian, the density matrix has 

index zero. This is done in order to emphasize that the 

density matrix found from solution (11) refers to a 

hypothetical pair in which all the processes that occur in real 

pairs occur, with the exception of pair recombination. The 

pair density matrix with allowance for recombination will be 

denoted as ρ without index. It is important to emphasize that 

at the initial moment of time both ensembles, hypothetical 

and real, are given by the same density matrix. 

ρ0(0)=ρ(0).                                  (12) 

For further considerations, it is extremely important to 

distinguish the nature of the initial state. 

The initial state of pairs can be a quantum pure state, i.e. 

be a given quantum superposition of the basis states. In the 

case of RP recombination, the basis states are the singlet and 

triplet states of the RP spins. For example, in the primary 

photochemical act of charge separation in the reaction center 

of photosystems, radical ion pairs are born, and all of them 

are born in such a state in which the state of spins in all pairs 

is a singlet. If the initial state is a quantum superposition, the 

initial density matrix (12) can have non-zero off-diagonal 

matrix elements in the calculation basis, which we have 

chosen for the RP singlet and triplet states. 

The initial state of the pairs can be a mixture of different 

states. For example, one fraction of the RP can be prepared in 

the singlet spin state, and the other fraction in the triplet spin 

state T0 with zero projection of the total spin of the RP. In the 

case of such a mixed initial state of the RP, the density matrix 

will have non-zero diagonal elements, ρSS≠0, ρT0T0≠0, but the 

off-diagonal matrix element is equal to zero, ρST0=0. In a 

mixture of pairs, there is no quantum coherence inherent in a 

quantum superposition of states. 

Taking into account the indicated differences between pure 

and mixed states, we will consider these cases separately. 

3.1. An Ensemble of Identical RPs Prepared in a Pure 

Quantum State 

If the recombination of pairs is not considered, then the 

density matrix ρ
0
(t) of such a hypothetical ensemble of pairs can 

be found by solving Eq. (11) with the initial condition (12). 

Considering the RP recombination, within the framework 

of the described model, the desired spin density matrix ρ(t) 

can be represented as ρ(t)=f(t) ρ0(t). In this work, kinetic 

equations for f(t) and ρ(t) are obtained. 

At any moment of time random RPs can recombine and 

“depart” from the RP ensemble. This means that by the time t, 

only a part of the RPs, f(t), will remain that have avoided 

recombination. The density matrix of the subensemble of 

surviving RPs can be represented as the product of the density 

matrix of RPs (a hypothetical pair) ρ
0
(t), in which the 

recombination of radicals is excluded, and the probability f(t) that 

the RP in the time interval (0, t) survived (did not recombine): 

ρ(t) = f(t)ρ
0
(t).                             (13) 
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The trace of the matrix ρ
0
(t) is equal to 1. Therefore, for 

the j-th set of identical RPs, fj(t) = Tr{ρj(t)}, 

fj(t) describes the RP recombination kinetics of the j-th set 

of identical RPs, and the kinetics of the number of RPs that 

escaped recombination. 

In fact, the fraction f(t) that avoided RP recombination 

specifies a decrease in the normalization of the density matrix, 

i.e. sets the reduction in the number of pairs of particles. It is 

interesting to note that the RP decay kinetics can be found as 

the ratio of the corresponding matrix elements, 

f(t)= ρmn(t)/ρ
0

mn(t).                          (14) 

Note, Equation (14) is valid only for a pure state of 

identical RPs with no relaxation. 

This possibility may be useful if only one matrix element 

is observed in the experiment, for example, the fraction of 

RPs in the singlet state. Note that the population of states for 

a hypothetical ensemble can be calculated theoretically. 

In this work, for the first time, the total probability f(t) that RP 

avoids recombination in the time interval (0, t) was calculated 

for the recombination model as a Poisson random process. 

For definiteness, let us assume that RPs can only 

recombine in the singlet spin state. 

As already noted, at time t the RP ensemble will consist 

only of those RPs that “survived” by this moment, despite the 

fact that they had a chance to recombine in the time interval 

(0, t). Let us find the contributions of subensembles that have 

survived by the time t of observation of pairs of radicals for 

different numbers of chances to recombine. 

For the Poisson process, the probability that during the 

time t there will be no chance for the RP to recombine is 

equal to f0 =exp(-Ks t). 

The contribution of the RP subensemble that survived 

despite having one chance to recombine can be found as the 

product of the probabilities of the two processes. Let's 

assume that this single chance falls on the time interval (t1, 

t1+∆t1). Then for the Poisson process the probability of this 

chance is equal to exp(-Ks t) Ks ∆t1. But this probability is 

not yet the probability of RP recombination that we are 

looking for. To recombine, the RP must be in the singlet 

state. The probability of RP to be in the reactive singlet state 

is equal to ρ
0

SS(t1) and to be in non-reactive triplet state is 

equal to ρ
0

TT(t1)=1- ρ
0

SS(t1). The probability of RP to avoid 

recombination in the time interval (t1, t1+∆t1) is equal to 

exp(-Ks t) Ks ∆t1 (1-ρ
0

SS(t1)). Summing up the contributions 

over the entire time interval, we finally obtain the probability 

for the survival of the RP under the condition that in the 

interval (0, t) there was the only one chance for 

recombination, 

f1=exp(-Ks t)	� ��1�
� Ks (1-ρ

0
SS(t1)). 

Similar reasoning gives the probability of RP survival 

under the condition that there were two chances for 

recombination in the interval (0, t), 

f2 =exp(-Ks t)	� ���
� �1 − ���� ������� 	� ����

� �1 − ���� �������. 

Summing up the contributions of all RP subensembles that 

correspond to a different number, from zero to infinity, 

chances for recombination in the interval (0, t), for the total 

probability of RP to avoid recombination and survive, we get 

f(t)= ехр(-Ks t) {1+� ��1�
� Ks (1-ρ

0
SS(t1)) + � ����

� Ks (1-��SS(t

2))� �����
� Ks (1-��SS(t1))+…}.                (15) 

It turns out that this infinite sum can be found. To do this, 

we need to take the derivative f(t) (15) of time. It turns out a 

linear differential equation. 

∂f(t)/∂t= - Ks ρ
0

ss(t)) f(t).                        (16) 

The function f(t) by definition (15) describes the 

proportion of survivors by the time of RP observation. 

Therefore, (16) can be considered as a kinetic equation for 

the RP concentration. 

From equation (16) we get 

f(t)=exp(-Ks� ���
� ���� ����; 

ρ(t) = f(t) ρ
0
(t)= exp(-Ks � �����

� �����) ρ0
(t).    (17) 

Using (11, 13, 17), we obtain the kinetic equation for the 

RP density matrix with allowance for recombination for the 

situation when RPs recombine in the singlet state and at the 

initial moment all RPs are in a given pure quantum state, 

∂ρ(t)/∂t = - (i/�)[H,ρ(t)] – Ks ρ
0

SS(t) ρ(t).       (18) 

The last results can be generalized to other cases. If RP 

recombination can occur not only in the singlet, but also in 

the triplet state, then instead of (18) we obtain the equation 

∂ρ(t)/∂t = - (i/�)[H,ρ(t)] – (Ks ρ
0

SS(t)+KT Tr{PT ρ
0
(t) PT}) 

ρ(t).                                     (19) 

In this equation, KT is the RP recombination rate constant 

in the triplet state, the PT is operator of projection into the 

triplet subspace of the RP spin states, Tr{} gives the total 

population of the RP triplet states. When deriving (19), it was 

assumed that, in any of the triplet spin states, RP 

recombination occurs with the same rate constant KT. 

The proportion of RP that avoided recombination in this 

case is equal to 

f(t)=exp[-� ���
� (Ks ρ

0
SS(t)+KT Tr{PT ρ

0
(t) PT})].     (20) 

To concretize the results obtained, we consider a specific 

model system. 

Let us assume that the paramagnetic relaxation does not 

have time to noticeably manifest itself during the lifetime of 

the RP and, therefore, we do not take into account the 

paramagnetic relaxation in model calculations. 

Let RP be given with the spin Hamiltonian 

H=�(ωA SAz+ωB SBz).                   (21) 
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Let us assume that the RP ensemble is prepared in the 

singlet spin state. 

Then at time t the elements of the density matrix RP in the 

S-T0 basis are equal to 

ρ
0

SS(t)=cos
2
((ωA-ωB)t/2); 

ρ
0

T0T0(t)=sin
2
((ωA-ωB)t/2);                      (22) 

ρ
0

ST0(t)=(i/2)sin((ωA-ωB)t); 

ρ
0

T0S(t)=(-i/2)sin((ωA-ωB)t); 

If we assume that RPs recombine only in the singlet state, 

from equations (17, 22) we obtain the fraction of RPs that 

avoided recombination in the form 

f(t|S)=exp[-(Ks/2) (t+(1/(ωA-ωB)) sin((ωA-ωB)t))].  (23) 

If the RP ensemble were prepared in the triplet Т0 state, 

then we would have 

ρ
0

SS(t)=sin
2
((ωA-ωB)t/2). 

Substituting this population value of the singlet state into 

(17), we obtain 

f(t|T0)=exp[-(Ks/2) [t-(1/(ωA-ωB)) sin((ωA-ωB)t))].  (24) 

Comparison of (23) and (24) specifically demonstrates the 

expected dependence of the fraction of RPs that escaped 

spin-selective recombination on the initial state of RP spins. 

For clarity, Figure 1 shows the kinetic curves of the 

decrease in the amount of RP due to their recombination. 

They show that the kinetic curves really strongly depend on 

the initial state of the spins and on the frequency of singlet-

triplet transitions. 

 

Figure 1. Kinetic curves f(t) calculated from (23) for the singlet RP 

precursor (thin curve) and from (24) for the triplet precursor (thick curve). 

Calculation parameters: Ks=0.1; ωB-ωA=0.2. A very thin curve depicts the 

function exp(-Ks t). 

For comparison, Figure 1 shows the RP recombination 

kinetics if singlet and triplet pairs recombine with a rate 

constant equal to Ks=0.1 (very thin lower curve in Figure 2). 

RP oscillations between the singlet state, in which RP can 

recombine, and the triplet nonreactive state significantly 

delays the recombination of radicals. 

When RP recombination can occur both in the singlet and 

triplet T0 states and the RP ensemble starts in the singlet state 

of spins, from (20, 22) we obtain 

f(t)=exp(-[ K t+(∆K/(ωA-ωB)) sin((ωA-ωB)t)]).     (25) 

Here K=(KS+KT)/2, ∆K=(KS-KT)/2. 

Note that for KS=KT≡K, i.e. with the same reactivity for all 

RP spin states, equation (25) gives the result expected for the 

Poisson recombination process (see (10)). 

ρ(t) = f(t) ρ
0
(t)=exp(-K t) ρ

0
(t).                 (26) 

The results obtained above show that the spin state of a 

pair of radicals manifests itself in their recombination 

qualitatively similarly to the manifestation of the steric factor 

in chemical reactions. True, in contrast to the steric factor, the 

influence of spin selection is not described by some constant 

coefficient. This coefficient oscillates over time. 

There is one important feature of equations (18, 19). The 

contribution of recombination in a sense turns out to be a 

quadratic function of the RP density matrix, since the product 

of the density matrix element without recombination by the 

RP density matrix with allowance for the recombination of 

radicals appears in them. This fact must be taken into account 

when analyzing the RP ensemble in a mixed state. 

3.2. An Ensemble of RPs Prepared in a Mixed State 

Above, the kinetic equations for the spin density matrix 

were obtained for RP ensembles prepared in pure quantum 

states. In this case, all RPs are identical. An ensemble in a 

mixed state is a mixture of subensembles, each of which, 

with a given probability, is in one of the pure quantum states 

that make up the computational basis. For example, in the 

case of RP, we use the singlet and triplet spin states as a 

computational basis. 

For mixed states, the total RP density matrix, considering 

the recombination of radicals, can be found as follows. Let us 

assume that we are given an ensemble of RPs in which the 

fraction of pairs w1 is prepared in the singlet state, and the 

fraction of pairs w2=1-w1 is prepared in the triplet state. 

The density matrix of the entire ensemble is the sum of the 

density matrices of the subensembles calculated with the 

given statistical weights w1 and w2. Let us assume that RPs 

recombine only in the singlet state. Then the kinetic equation 

(18) is solved separately for the above subensembles. For 

both subensembles, we solve an equation of the form (18), 

but for each subensemble it is necessary to use the initial 

conditions inherent in them and the populations of the states 

ρ
0

SS(t) and ρ
0

T0T0(t) corresponding to these initial conditions. 

Such a separate calculation for each subensemble has to be 

done because the kinetic equations (18) are not linear. 

For example, for the case considered above, when 

transitions from the singlet state to one triplet state T0 occur 

in the RP, under the assumption that the RP recombination 

occurs only in the singlet state, the fraction of pairs that 

avoided recombination is equal to 

20 40 60 80 100
t

0.2

0.4

0.6

0.8

1.0

f
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f(t)=w1 exp(-Ks � ���
�  cos

2
((ωA-ωB)t/2)) + w2 exp(-Ks 

� ��	�
� sin

2
((ωA-ωB)t/2)).                    (27) 

3.3. Comparison of Numerical Results Obtained Using New 

and Existing Phenomenological Kinetic Equations 

The existing theories of the spin-dependent RP 

recombination kinetics are phenomenological. In some form, 

they include the dependence of the RP recombination on the 

total spin of the unpaired electrons of the pair. And now, for 

more than half a century, they have been helping to interpret 

experimental data on spin chemistry. At the same time, in these 

phenomenological theories there is no clearly formulated idea 

for describing quantum coherence in the state of RP spins in 

the presence of recombination of radicals in a pair. 

In this work, a different approach was used. First, a clear 

model of RP recombination was formulated considering the 

effect of spins on recombination, and then, within the 

framework of this model, the kinetic equation for the RP 

density matrix was found in a consistent manner. In particular, 

a kinetic equation for the RP concentration was found. 

Therefore, it is of great interest to compare the results of 

two different approaches. For this purpose, the same 

quantities were calculated using different kinetic equations 

for the RP density matrix. For different values of the RP 

parameters, for example, the populations of the singlet and 

triplet states of the RP ensemble were calculated. 

For definiteness, we assume that a pair of radicals 

recombine only in the singlet spin state. Among the existing 

theories, for comparison with the results of this work, there 

have been selected well-known Eqs. (3) [5-7] (note that we 

neglected the contribution of paramagnetic relaxation) 

∂ρ(t)/∂t = - (i/�)[H,ρ(t)] - (Ks/2) (Ps ρ(t)+ρ(t) Ps)      (28) 

and equations (cf. (6), [11, 12]) 

∂ρ(t)/∂t = - (i/�)[H,ρ(t)] - Ksρ+Ks (PT0 ρ PT0).        (29) 

These equations were compared with equations (see (18)) 

proposed in this work: 

∂ρ(t)/∂t = - (i/�)[H,ρ(t)] – Ks ρ
0

SS(t) ρ(t). 

The above equations make it possible to calculate the RP 

density matrix taking into account spin-dependent 

recombination. They all solve the same problem. Equations (28) 

and (29) have much in common. They are both linear in the 

density matrix. They describe the decrease in the RP population 

in the singlet state in the same way. But they describe differently, 

first of all, the quantum coherence of the singlet and triplet states. 

Equation (18) differs fundamentally from (28) and (29) in 

form. First, (18) turns out to be nonlinear in the density matrix. 

Second, according to (18), RP recombination equally changes 

all matrix elements, both diagonal elements (populations) and 

off-diagonal elements (quantum coherences). 

To get an idea of the potential of different theories, numerical 

calculations of the population of the singlet and triplet states of 

the RP were carried out using equations (18, 28, 29). 

The calculations were carried out for the simplest model 

described above, when the RP spin Hamiltonian has the 

form (21).  

The results of numerical calculations are shown in Figure 2. 

  

   

Figure 2. Time dependence of the populations of the singlet state, ρSS, and the triplet state, ρT0T0, for the singlet-born (upper curves) and the triplet-born (down 

curves) radical pairs. Blue lines are solutions of Eqs. (18) obtained in this work, green curves are solutions of Eqs. (28) and black curves are solutions of Eqs. 

(29). Parameters of calculations: Ks=0.1; ωA-ωB=0.1. 
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A comparison of the curves in Figure 2 shows that the 

phenomenological kinetic equations (28, 29) and equation (18), 

obtained in this work in a consistent way for a model in which 

the RP recombination without considering the spin dependence 

of this reaction (the hypothetical spinless RP model) is time-

homogeneous Poisson process, qualitatively give comparable 

results. This result seems to be quite expected, since when 

formulating the phenomenological equations, we tried to reflect 

important aspects of the relationship between the spin state of 

the RP and their recombination. The fact that the results of the 

phenomenological theories are qualitatively comparable with 

those of the consistent theory confirms that these 

phenomenological equations have been useful for evaluating 

magnetic and spin effects in spin chemistry. 

Attention should be paid to the fact that quantitatively 

phenomenological theories predict results that differ 

significantly from the results of a consistent description of 

the kinetics of spin-dependent RP recombination proposed in 

this work. 

We need experiments that could test quantitatively the 

predictions of different theories. For example, the theory 

proposed in this work predicts (see (14)) that for RPs 

prepared at the initial time in a pure quantum state, 

recombination equally reduces all elements of the density 

matrix in the S-T basis. Phenomenological theories predict 

quite different behavior. 

It would be useful to analyze some of the already 

published experimental data, taking into account the results 

of the theory proposed in this paper. I would be glad to 

cooperate in such a matter. 

4. Conclusion 

In this work, for the first time, a kinetic equation for the 

spin density matrix of radical pairs was obtained in a 

consistent manner, consistently considering the spin-selective 

recombination of radicals in a pair. 

The main idea of this work is as follows. In an ensemble of 

radical pairs (RPs), only a part of the RP actually recombines 

at any given time. Those pairs that recombine immediately 

drop out of the ensemble, and the number of pairs in the 

ensemble decreases. All RPs that escaped recombination in 

one way or another have density matrices unperturbed by 

recombination. Therefore, the task is to calculate the 

probability that the RP will avoid recombination by the time of 

observation. To solve this problem, it is necessary to set the RP 

recombination model. In this work, it is proposed to consider 

recombination as a Poisson process that is homogeneous in 

time. For this case, the problem is quite easy to solve. As a 

result, a kinetic equation for the RP density matrix was 

obtained taking into account the spin-dependent recombination 

of radicals in a pair (see (18, 19)). For example, in the case 

when only RPs in the singlet state can recombine, the 

contribution of recombination to the kinetic equation is 

(∂ρ(t)/∂t)rec= - Ks ρ
0

SS(t) ρ(t).                      (30) 

It should be emphasized that (30) was obtained under the 

assumption that the initial state of the RP is a pure quantum 

state. In the case of an RP ensemble in a mixed state, 

equations (30) must be solved for each of the RP 

subensembles in a purely quantum state that contribute to the 

mixed state (see (27)). 

We note that (30) can be interpreted as the usual kinetic 

equation for unimolecular (quasi- unimolecular) reactions, if 

we consider Ks ρ
0

SS(t) as the instantaneous value of the 

“constant” of the reaction rate. It turns out that the singlet-

triplet evolution of pair spins modulates the effective 

“constant” of quasi- unimolecular recombination of RP. 

It is possible to formulate one of the necessary 

requirements for the form of kinetic equations for the density 

matrix of RPs, considering spin-dependent recombination. 

This requirement is that the kinetic equations should take the 

form of equations (10), if in the tested equations it is assumed 

that recombination does not depend on the state of electron 

spins, i.e. in both singlet and triplet states, the recombination 

rate constants coincide, KT = KS. It turns out that the kinetic 

equations proposed in this paper (see, for example, (18, 19)) 

fully satisfy this requirement. As for the phenomenological 

kinetic equations, only equations of the form (3, 28) satisfy 

this requirement. Indeed, if recombination of RPs is possible 

in both singlet and triplet spin states, equations (3, 28) are 

generalized to the form 

∂ρ(t)/∂t=-(i/�) [H,ρ(t)]-(KS/2)(PSρ(t)+ρ(t)PS)-(KT/2)(PTρ(t)+ρ

(t)PT).                                     (31) 

In the limiting case KT=KS, these equations turn into 

Eqs. (10). 

However, the phenomenological approach proposed in [11, 

12] (see Eqs. (6)), when generalized to the case of the 

possibility of recombination of RP in both singlet and triplet 

spin states, gives kinetic equations  

∂ρ(t)/∂t=-(i/�) [H,ρ(t)]-KSρ(t)+KS(PTρ(t)PT)-KTρ(t)+KT(PSρ(t)

PS),                                      (32) 

which in the limiting case KT=KS are not reduced to Eqs. (10) 

I am rather confident that the results of this work will 

give an additional impetus to the development of spin 

chemistry. 
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